2009年2月25日星期三

PNAS:光合作用代谢网络稳定机制

来自复旦大学生命科学学院,上海生物信息技术研究中心,中科院上海生科院 系统生物学 重点实验室,英国贝德福德大学( University of Bedfordshire)等处的研究人员利用新方法对C3植物在胁迫环境下,叶绿体光合成代谢情况进行了分析,发现这一动力学过程中复杂代谢网络的稳定机制,为研究植物代谢提供了重要信息,这一研究成果公布在1月7日《美国国家科学院院刊》(PNAS)在线版上。
在这篇文章中,研究人员利用了一种新方法对C3植物在胁迫环境(干旱胁迫和高CO2浓度)下,其叶绿体的光合成代谢情况进行了分析,这种方法称为M_DFBA,最小化新陈代谢调整动力学流量平衡(minimization of metabolic adjustment dynamic flux balance analysis)。
研究结果表明,C3植物叶绿体中的光合成代谢能高度协调新陈代谢的波动,这种高度协调性保证了生物系统的稳定,而且对于稳定生物体的功能至关重要。新研究方法有利于了解此类现象和动力过程中的复杂代谢网络的稳定机制,可以运用到其它方面。( 生物谷 Bioon.com)
生物谷 推荐原始出处:
PNAS Published online before print January 7, 2009, doi: 10.1073/pnas.0810731105
Photosynthetic metabolism of C3 plants shows highly cooperative regulation under changing environments: A systems biological analysis
Ruoyu Luoa,b,c,1, Haibin Weic,1, Lin Yec, Kankan Wangd, Fan Chene, Lijun Luof, Lei Liua,b, Yuanyuan Lib, M. James C. Crabbeg, Li Jinc, Yixue Lia,b,2 and Yang Zhongb,c,f,2
aKey Laboratory of Systems Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200020, China;bShanghai Center for Bioinformation Technology, Shanghai 200023, China;cSchool of Life Sciences, Fudan University, Shanghai 200433, China;dState Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai 200020, China;eKey Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China;fShanghai Agro-Biological Gene Center, Shanghai 201106, China; andgInstitute of Applied Natural Sciences, Faculty of Creative Arts, Technologies and Science, University of Bedfordshire, Luton LU1 3JU, United Kingdom
Abstract
We studied the robustness of photosynthetic metabolism in the chloroplasts of C3 plants under drought stress and at high CO2 concentration conditions by using a method called Minimization of Metabolic Adjustment Dynamic Flux Balance Analysis (M_DFBA). Photosynthetic metabolism in the chloroplasts of C3 plants applies highly cooperative regulation to minimize the fluctuation of metabolite concentration profiles in the face of transient perturbations. Our work suggests that highly cooperative regulation assures the robustness of the biological system and that there is closer cooperation under perturbation conditions than under normal conditions. This results in minimizing fluctuations in the profiles of metabolite concentrations, which is the key to maintaining a system's function. Our methods help in understanding such phenomena and the mechanisms of robustness for complex metabolic networks in dynamic processes.

没有评论:

发表评论